

DASIAC SR 174

FALLOUT HAZARD PREDICTION INCONSISTENCIES

General Electric Company—TEMPO DASIAC 816 State Street Santa Barbara, California 93102

1 October 1979

Final Report for Period 1 October 1978 - 1 October 1979

CONTRACT No. DNA 001-79-C-0081

Approved for public release; distribution unlimited.

THIS WORK SPONSORED BY THE DEFENSE NUCLEAR AGENCY UNDER RDT&E RMSS CODE B337079464 P99QAXDC00809 H2590D.

Prepared for: Director DEFENSE NUCLEAR AGENCY Washington, D.C. 20305

80 5 19 194

FILE COPY

R

Shot	Yield (KT)	SDOB ^a (m)
JANGLE-S	1.2	-1.0
JOHNIE BOY	0.5	-0.74
JANGLE-U	1.2	4.9
ESS	1.3	19
SCHOONER	31	34
CABRIOLET	2.3	39
DANNY BOY	0.42	45
^a Scaled depth of t	ourial at detonation.	

Table 5-2. Lharacteristics of test shots in parameter comparisons.

In the evaluation of prediction capability, each model had three isodose contours to predict for each of seven shots for a maximum score of 21. The accumulated numbers of predicted areas, within the enclosed isodose criteria of ± 30 percent, are shown in Table 5-10. The most capable predictors for these two surface and five buried shots were PROFET, EM-1, and KDFOC. PROFET has an 83 percent success rate where it produced isodose contours, and refused to predict contours for all of the underground shots. However, its overall success rate was 24 percent. SEER failed the criteria in all predictions, and had the highest refusal rate of 17 out of 21. In general, the models made a poor showing at predicting the contaminated areas in the yield range where they are most adept at predicting, the low KT range. Among the shots, JANGLE-U isodose enclosed areas were modeled best at 7 successes in 15 predictions and JOHNIE EOY was next at 6 successes in 21 predictions. The models were least able to predict the areas enclosed by isodos. contours on ESS and CABRIOLET.

	NULL-3	and fallout mode	els.*	
Statistics		Gamma Isodose (Contour (R/hr)	
	35	100	300	500
JANGLE-S				
Hotline Length (m)	5066	3737	1498	693
Hotline Azimuth (deg)	5	1	346	342
Area (km²) AUGER	3.17	1.44	9.38	9.12
Hotline Length (m)	7320	4834	3496	2829
Hotline Azimuth (deg)	8	18	18	18
Area (km²)	7.04	2, 59	1.33	0.85
DELF IC				•
Hotline Length (m)	14843	5750	1420	1250
Hotline Azimuth (deg)	1	0	0	359
Area (km²)	12.35	2.61	0.61	0.23
EM-1				
Hotline Length (m)	16000	8100	3700	2600
Hotline Azimuth (deg)	8	8	8	8
Area (km²)	6.20	1.30	0.23	0. <u>1</u> 0
KDFOC				
Hotline Length (m)	6523	4343	3009	2343
Hotline Azimuth (deg)	8	18	18	19
Area (km²)	6.66	3.04	1.41	0.87
LASEER				
Hotline Length (m)	12881	6320	1501	509
Hotline Azimuth (deg)	8	8	358	357
Area (km²)	24.51	4.70	0.40	0.22
PROFET				
Hotline Length (m)	8274	3517	293	287
Hotline Azimuth (deg)	4	354	270	270
Area (km²)	3. 6Õ	0.56	0.14	0.14
SEER				
Hotline Length (m)	11426	5587		
Hotline Azimuth (deg)	10	10		
Area (kạ²)	18.34	4.02		

Table 5-3. Comparative pattern statistics from JANGLE-S and fallout models.*

2.

4 A I

Ę

The strateging and the

* Adapted from Reference 5-5

79°

Table 5-4. Comparative pattern statistics from JOHNIE BOY and fallout models.*

Gamma leodose Contour (R/hr) Statistics <u>103</u> _____10___ JOHNIE BOY 4102 2733 10523 Hotline Length (m) 345 343 345 Hotline Azimuth (deg) 0.54 1.27 Area (km²) 10.68 AUGER 2035 3295 9431 Hotline Length (m) 348 347 352 Hotline Azimuth (deg) 3.33 0.90 13.06 Area (km²) DELFIC 3319 5399 9673 Hotline Length (m) 348 346 Hotline Azimuth (deg) 349 1.10 7.66 2.24 Area (km²) EM-1 4000 6500 **3000**0 Hotline Length (m) 359 359 359 Hotline Azimuth (deg) 0.58 5.80 1.90 Area (km²) KDFOC 1357 3003 15300 Hotline Length (=) 23 350 355 Hotline Azimuth (deg) 1.23 3.32 26.85 Area (km²) LASEER 5717 3105 Hotline Length (m) 13042 345 344 345 Hotline Azimuth (deg) 2.18 5.77 27.85 Area (k=²) PROFET 3987 10495 4857 Hotline Length (m) 346 348 348 Hotline Azimuth (deg) 0.55 1.63 7.58 Area (k=2) SEER 3522 564 13180 Hotline Length (m) 345 346 348 Hotline Azimuth (deg) 3.09 6.44 25.55 Area (k=²)

* Adapted from Reference 5-5

Table 5-5. Comparative pattern statistics from JANGLE-U and fallout models.*

<u>Statistics</u>	<u>Gamma Iso</u>	dose Conto	our (R/hr)
-	_100	200	500
JANGLE-U			
Hotline Length 'm)	5231	2985	1380
Hotline Azimuth (deg)	25	18	348
Area (km ²)	5.86	2.24	0.58
AUCER			
Hotline Length (m)	9457	5322	1543
Hotline Azimuth (deg)	36	24	48
Area (km ²)	18.57	4.71	0.98
DELFIC			
Hotline Length (m)	2727	6533	2676
Hotline Azimuth (deg)	29	28	21
Area (km ²)	6.60	3.30	0.92
EM- 1			
Hotline Length (m)	9100	5300	2500
Hotline Azimuth (deg)	36	36	36
Area (km²)	2.50	0.55	0.099
KDF9C			
Hotline Lengtn (m)	3694	2280	1499
Hotline Azimuth (deg)	25	27	50
Area (km²)	4.52	2.42	0.70
LASEER			
Hotline Lengtı (m)	4140	2306	1173
Hotline Azimuth (deg)	46	23	20
Area (km²)	6.74	2.45	0.56

* Adapted from Reference 5-5

くちたちとうたい。ために対応すたが

Table 5.6. Comparative pattern statistics from ESS and fallout models.*

<u>Statistics</u>	Gamma	Isodose	Contour (R/hr)
	10	50	100	500
ESS				
Hotline Length (m)	7275	4186	2238	1192
Hotline Azimuth (deg)	134	136	127	124
Area (km²)	14.32	6.26	3.55	1.37
AUGER				
Hotline Length (m)	34570	13379	5129	1615
Hotline Azimuth (deg)	154	142	133	87
Area (km²)	203.9	36.08	5.66	2.05
EM-1				
Hotline Length (m)	26000- 34000	13000- 16000	8500- 11000	2400- 3100
Hotline Azimuth (deg)	149	149	149	149
Area (km ²)	35.0-61.0	4.9-8.1	1.7-2.8 ().12-0.20
KDFUC	22265	13/58	3300	1509
Hotiine Length (M)	152	140	128	81
Hotime Azimuth (deg)	108 7	30.66	4,79	2.05
Area (KM ²)	190.7	50.00		
LASEEK	10307	2489	6100	964
Hotine Length (m)	19507	140	138	142
Hotilne Azimuth (deg)	130 60 02	17 15	8 71	0.39
Area (Km²)	07.34	17.15	0.7 x	J

* Adapted from Reference 5-5

ų,

, f

- 82

lable 5-/.	Comparative pattern statistics	from
	SCHOONER and fallout model«.*	

Statistics	Gamma	Isodose	<u>Contour (</u>	<u>R/hr)</u>
	1	10	20	100
SCHOONER		_ <u></u>		
Hotline Length (m)	27517	9319	8232	830
Hotline Azimuth (deg)	50	l	1	142
Area (km²)	209.7	36.75	18.79	1.67
AUGER				
Hotline Length (m)	15155	2820	1990	919
Hotline Azimuth (deg)	23	56	40	. 37
Area (km²)	121.3	11.75	6.73	0.44
EM-1				
Hotline Length (m)	6300-24000	-	-	-
Hotline Azimuth (deg)	67	67	67	67
Area (km²)	0.96-14.0	-	-	-
KDFOC				
Hotline Length (m)	31178	3438	3151	1879
Hotline Azimuth (deg)	51	34	38	66
Area (km²)	230.9	12.75	7.23	1.422
LASEER				
Hotline Length (m)	21795	3979		
Hotline Azimuth (deg)	60	56		
Area (km²)	85.93	3.12		

*Adapted from Reference 5-5

Table 5-8. Comparative pattern statistics from CABRIOLET and fallout models*

.

4

2.

alle aun

<u>Statistics</u>	Gamma	Isodose Contour (<u>R/hr</u> j
		10	100
CABRIOLET			
Hotline Length (m)	2674	634	337
Hotline Azimuth (deg)	340	264	177
Area (km²)	3.18	0.73	0.17
AUGER			
Hotline Length (m)	21407	3659	1959
Hotline Azimuth (deg)	43	351	15
Area (km²)	193.4	4.55	2404
EM-1			
Hotline Length (m)	4700-18000	1400-5600	240-960
Hotline Azimuth	47	47	47
Area (km²)	0.98-14.0	0.048-0.72	0.0066-0.10
KDFOC			
Hotline Length (m)	21932	5410	2039
Hotline Azimuth (deg)	26	2	6
Area (km²)	175.0	9.24	2.07
LASEER			
Hotline Length (m)	17387	5066	786
Hotline Azimuth (deg)	38	38	17
Area (km²)	86.75	7.79	0.43

* Adapted from Reference 5-5

Table 5-9. Comparative pattern statistics from DANNY BOY and fallout models*

.

<u>Statistics</u>	Gam	ma Isodose	Contour (R	<u>/hr</u>)
		10	_50	100
DANNY BOY				
Hotii e Length (m)	1778	1464	638	451
Hotline Azimuth (deg)	355	357	5	11
Area (km²) AUGER	1.27	0.80	0.33	0.24
Hotline Length (m)	10368	7400	2752	1227
Hotline Azimuth (deg)	3,1	357	353	328
Area (km²)	21.70	12.77	2.53	1.13
EM-1				
Hotline Lenyth (m)	3400-6500	270-5000	130-2400	82-1600
Hotline Azimuth (deg)	11	11	11	11
Area (km²)	J.073- 2.7	0.0034- 1.2	0.00036- 0.13	0.00011- 0.043
KDFOC				
Hotline Length (m)	16942	13753	6349	2157
Hotline Azimuth (deg)	357	2	, 3	13
Area (km²)	36.68	26.25	6 60	2.38
LASEER			,•	
Hotline Length (m)	15856	11916	5519	4013
Hotline Azimuth (deg)	353	· 356	355	355
Area (km²)	27.80	16.23	4.35	2.45

,

е 4 м.

.. 0415.

İ

* Adapted from Reference 5-5

ه کورواندم (روانه ۲۹ م د ۲۰ م. د ۲۰ مراد مراد مراد ما

માં છે. આ ગામ જ ગામના આ ગામના ગામના ગામના ગામના આ ગામના

5

÷

and the structure of the

A Sala Salatani

8

1. H . I . . ' ...''

1.1

1

8 , ,

*** ***

Cloud top heights versus yields, Nevada Winter season (observed values and least-squares fit, and values computed by the DELFIC code, using the standard atmosphere, 30 degrees North, January) (Reference 6-6). Figure 6-4.

had been stated as a second second

101

and a second

Table 6-4.	Normal [.]	ization	factors.
------------	---------------------	---------	----------

Mode 1	NF (R/Hr per KT per Sq. Mile)
LRL-h	2700
Dropsy	2585
NREC	2500
WSEG	2400
RAND	1200
DIA	1100 (implicit) ^a
NRDL - D	1093
USWB	1025
Ford-T	900
TOR	870
Sig C	689
RADFO	not treated in this model
Army	not treated in this model
AN/GMQ-18	no information available

^aEquivalent value¹

Model	Nominal K-Factor $\left(\frac{r - mi^2}{hr - kT}\right)$	Fraction of Activity on Particles Larger than 50 µm	Correction ^a or Amplification ^b Factors	Effective K-Factor $\left(\frac{r-mi^2}{hr-kT}\right)$
DELFICC	~ 2400	0.56	0.5	672
FROFET	~2700	0.47	0.5	634
SEER	2346	0.74	>2	>3472
KDFOC	2500	0.29	0.5	362
AUGER	2500	0.29	0.5	362
LASEER	2000	0.74	>1.4	>2072
WSEG-10	2500	0.79	-	2000

Table 6-5. Surface burst K-factors.

^a DELFIC and PROFET apply a combined ground roughness and instrument response correction factor of 0.5. LASEER applies a ground roughness factor of 0.7. KDFOC and AUGER assume that only half the activity is in the cloud for a surface burst.

- ^b SEER and LASEER arbitrarily multiply activity by a factor with a minimum value of 1.75, but which usually has a value of 2 or greater. (Though the users instructions do not call for it, we have applied a combined ground roughness-instrument response correction factor of 0.5.)
- ^C The DELFIC nominal K-factor is a typical value computed from output of the DELFIC particle activity module. DE'FIC does not use a preset or constant K-factor.

Table 6-6. Comparative parameters from KDFOC, AUGER and LASEER in fallout prediction.

Shot Modelled ^a	Model Name		Ра	rameters P	redicted by F	allout Models ^b	
		Base Surge Height (m)	Base Surge Radius (m)	Main Cloud Height (m)	Main Cloud Radius (m)	Fraction of Nominal K-Factur in the Clouds	Proportion of Activity in Main Cloud
ESS	KDFOC	1260	2520	2540	660	0.48	78%
	AUGER	1260	2520	3110	980	0.72	74%
	LASEER	1260	1900	2480	590	1.05	80%
SCHOONER	KDFOC	1400	6650	4200	1120	0.45	73%
	AUGER	1400	6650	5530	3780	0.46	49%
	LASEER	~ 1400	~ 6650	4180	1190	0.92	80%
DANNY BOY	KDFOC	390	1200	960	260	0.36	26%
	AUGER	390	1200	1800	600	0.29	32 %
	LASEER	490	1180	990	220	0.82	60%

^a Nuclear characteristics are shown in Table 5-2.

. *

1

b From Reference 6-5.

105

V. T. M. WALLY, "A PRACT AND A PRACT AN